热门搜索:

鑫泰二手设备购销部主要经营产品有:回收制药设备,回收化工设备,回收真空冷冻干燥机,回收冷凝器,二手化工设备等各类机械设备。质量保证,价格实惠。欢迎来电质询。

    白城二手空分制氧厂设备
    • 白城二手空分制氧厂设备
    • 白城二手空分制氧厂设备
    • 白城二手空分制氧厂设备

    白城二手空分制氧厂设备

    更新时间:2020-11-05   浏览数:12
    所属行业:化工 化工机械设备 化工反应设备
    发货地址:山东省济宁梁山县  
    产品规格:
    产品数量:9999.00台
    包装说明:
    单 价:668.00 元/台
    空分生产工艺流程
    空分生产工艺流程

    原料空气自吸入口吸入,经自洁式空气过滤器除去灰尘及其它机械杂质。过滤后的空气进入离心式空压机,经压缩机压缩到约0.62MPa(A),然后进入空气冷却塔冷却。冷却水为经水冷塔和氨蒸发器冷却后的水。空气自下而上穿过空气冷却塔,在冷却的同时,又得到清洗。

    经空冷塔冷却后的空气进入切换使用的分子筛纯化器,空气中的二氧化碳、碳氢化合物和水分被吸附。分子筛纯化器为两只切换使用,其中一只工作时,另一只再生。纯化器的切换周期约为480分钟,定时自动切换。

    净化后的空气分成二股。一股空气进入低压板式换热器,被返流污氮气冷却后直接进入下塔。

    另一股空气去增压空压机,这股空气分成三部分:部分为仪表空气和工厂空气,经过增压空压机级压缩冷却后送入仪表空气管网;第二部分空气经增压空压机段增压后进入膨胀机的增压风机中增压,然后被冷却器冷却至常温后进入高压板式换热器,再从板式换热器下部抽出进入膨胀机去膨胀。膨胀后的空气送入下塔。第三部分空气在增压空压机的第二段继续增压,经冷却后进入高压板式换热器,用来与高压液氧换热。高压空气经节流后进入下塔。

    空气经下塔初步精馏后,获得液空、纯液氮和污液氮,并经过冷器过冷后节流进入上塔。经上塔进一步精馏后,在上塔底部获得液氧,并经液氧泵压缩后进入高压板式换热器,复热后出冷箱,进入氧气管网。另在上塔底部抽取液氧送入液氧贮槽备用。

    从下塔顶部得到压力氮气,经低压板式换热器复热后出冷箱,压力为0.4MPa。

    从上塔顶部抽取的低压氮气送入低压氮气管网。另抽取液氮送入液氮贮存系统。

    从上塔上部引出污氮气经过冷器、高压板式换热器和低压板式换热器复热出冷箱后分成两部分:一部分进入分子筛系统的蒸汽加热器,作为分子筛再生气体,其余污氮气去水冷塔。

    从上塔中部抽取一定量的氩馏份送入粗氩塔,粗氩塔在结构上分为二段,第二段粗氩塔底部的回流液体经液氩泵加压后送入段顶部作为回流液;氩馏份经粗氩塔精馏得到粗氩,并送入纯氩塔中部,经纯氩塔精馏后在塔底部得到99.999%Ar的精液氩。在y-x图中P3>P2>P1。当压力愈低时,等压线离y=x的对角钱就愈远,表示组分在汽液中相的浓度差愈大,混合物分离就愈容易。
    白城二手空分制氧厂设备
    空气分离
    空气分离,简称空分。是指应用低温冷冻原理从空气中分离出其组分(氧、氮和氩、氦等稀有气体)的过程。一般先将空气压缩,并冷至很低温度,或用膨胀方法使空气液化,再在精馏塔中进行分离。例如当液态空气沸腾时,比较容易挥发的氮(沸点一196℃)先气化,氧则后气化(沸点一183℃)。

    简称空分,利用空气中各组分物理性质不同(见表),采用深度冷冻、吸附、膜分离等方法从空气中分离出氧气、氮气,或同时提取氦气、氩气等稀有气体的过程。

    空气分离



    空气分离常用的方法是深度冷冻法。此方法可制得氧、氮与稀有气体,所得气体产品的纯度可达98.0%~99.9%。此外,还采用分子筛吸附法分离空气(见变压吸附),后者用于制取含氧70%~80%的富氧空气。近年来,有些国家还开发了固体膜分离空气的技术。氧气、氮气及氩气、氦气等稀有气体用途很广,所以空气分离装置广泛用于冶金、化工、石油、机械、采矿、食品、军事等工业部门。


    沿革

    编辑


    1895年,德国人C.林德研究成功了一次节流循环液化空气的方法,这是简单的深度冷冻循环。它采用节流膨胀和逆流换热,称为林德循环。1902年,德国林德公司制成了套林德循环单级精馏工业装置。同年,法国人G.克劳德研究成功了带往复式膨胀机的中压冷冻循环液化空气的方法,可减少冷冻消耗,称为克劳德循环。1939年,苏联人∏.Л.卡皮查将离心式膨胀机用于低压空分装置,称为卡皮查循环,使能耗进一步下降。目前,各国都趋向发展大型化板翅式换热器的全低压空分装置,使单机制氧能力不断提高,能耗不断降低。中国于1953年开始制造每小时生产30m3的制氧装置,1958年制造了每小时生产3350m3的制氧成套设备,1970年设计了板翅式换热器的大型全低压空分装置,每小时制氧能力为10000m3。深度冷冻法  分为两步,先行制冷,再加之精馏即可得到不同的气体产品。



    空气分离







    制冷



    为了使空气液化,可采用不同的深度冷冻循环装置,主要以林德循环和克劳德循环为基础。前者是通过节流膨胀制冷;后者除仍有节流膨胀外,还有一部分气体在膨胀机中作等熵膨胀。气体进行等熵膨胀时,温度的降低要比节流膨胀大,而且能回收一部分压缩功,所以比节流膨胀经济。其他各种改进的深度冷冻循环,有双压节流循环、带氨预冷节流循环、逐级重叠循环等。


    在深度冷冻法的各种循环中,典型的流程(见图)是先使空气在过滤器中滤去尘埃等杂质进入压缩机,再经分子筛净化器除去空气中在低温下易凝固气体,如水蒸气和二氧化碳等,已净化的空气在换热器中由产品氮气和氧气降温。出换热器后,空气分成两路:一路经第二换热器继续冷却后,再经节流阀降压;另一路经膨胀机降压。两路膨胀后的空气温度均降至103K左右,进入双级精馏塔的下塔底部。






    精馏



    在深度冷冻法中,主要的分离过程是在双级精馏塔中进行的。该塔由上、下两塔和塔间的冷凝蒸发器组成。进入下塔底部的空气在该处的温度和压力条件下,已部分液化。由于液氮沸点比液氧沸点低,因而下塔底部的液化气体是富氧液态空气,含氧量一般为30%~40%。下塔操作压力应高于上塔才能使下塔顶部氮的冷凝温度高于上塔底部液态氧的沸腾温度(见p-V-T关系)。从而使冷凝蒸发器内热量由管内传向管间,并具有一定的传热温差。冷凝蒸发器同时起到了下塔塔顶冷凝和上塔塔底加热的作用。空气在下塔由下而上经过多层塔板精馏,使易挥发组分氮的浓度逐渐提高,并在冷凝蒸发器管内冷凝成液氮。一部分液氮在下塔作回流液;一部分收集于液氮槽,经减压后作为上塔塔顶回流液。下塔底部的富氧液态空气,经节流阀进入上塔中部,与冷凝蒸发器蒸发出来的气体逆流接触。由此使下流液体中的含氧量由上至下不断增加,后积聚在冷凝蒸发器管间,含氧量可达99%以上,并不断在此蒸发出产品氧而引出塔外。上塔塔顶引出的则是产品氮,浓度亦可达98%以上。出精馏塔的产品氧和产品氮的温度都很低,可通过换热器使输入空气降温。


    由于氩的沸点介于氮、氧沸点之间,利用双级精馏塔还不能同时得到纯氮和纯氧。若在上塔中部适当部位抽出富氩气体作为提氩原料,则产品氮、氧的浓度可提高。沸点较低的氖和氦气积聚在液氮上面,可抽出作为提氖、氦的原料。沸点比较高的氪、氙则积累在上塔底部液态氧和气体氧中,可抽出作为提氪、氙的原料。

    空气分离



    分子筛吸附法  基于分子筛对氮和氧的不同吸附力,空气通过分子筛床层后,吸附相和气相中的组成将发生变化从而达到分离的目的,由于吸附相含氮量较高,故流出气体中含氧量较高。吸附柱足够长时,可制得一定纯度的氧气,分子筛可采用减压脱附的方法由给定的压力、温度和成分,再根据热焓的计算式,求出与给定成分相对应的饱和汽相和饱和液相的热焓值,并将所得的点1\\、2\\…和1\、2\、…连接起来,则可得饱和蒸汽线(虚线)和饱和液体线(实线)、然后再借助给定压力下的T-x图,求出在两相区的等温线(见图1-17)。
    白城二手空分制氧厂设备
    制氧机
    制氧机是制取氧气的一类机器,它的原理是利用空气分离技术。首先将空气以高密度压缩再利用空气中各成分的冷凝点的不同使之在一定的温度下进行气液分离,再进一步精馏而得。
    中文名 制氧机 外文名 Oxygen making machine 交流电压 220V 额定电流 0.6A 制氧方式 物理制氧
    目录
    1 物理原理
    2 技术特点
    3 操作方法
    4 技术研究
    5 吸氧方法
    物理原理
    采用分子筛的吸附性能,通过物理原理,以大排量无油压缩机为动力,把空气中的氮气与氧气进行分离,终得到高浓度的氧气。这种类型的制氧机产氧迅速,氧浓度高,适用于各种人群氧疗与氧保健。耗电量低,一小时的费用仅一毛八分钱,使用价格低。
    制氧机结构
    制氧机结构
    技术特点
    它的特点是吸氧直接提高动脉血氧含量,而不是作用于机体某个部分间接改善缺氧,只是在增加机体有生以来一直不断摄入的氧气。没有对于机体陌生的、需要适应的、需要解析的物质,因而只是改善而不是改变机体的自然生理状态和生物化学环境。低流量氧疗和氧保健无需专门指导效果快速而肯定有益而无害,氧疗有及时缓解缺氧症状的功效,对于消除导致缺氧的原因却只有部分的和渐进的作用。对于纠正生理性缺氧和环境性缺氧,防治由于环境性缺氧造成的疾病,氧疗是主要手段。对于纠正病理性缺氧,氧疗是重要的辅助手段。对于紧急抢救,氧疗是重要手段之一。
    操作方法编辑
    1.把主机装轮作落地式或装挂架贴墙悬挂在室外,装上采气过滤器;
    2.按需要在墙上或支撑物上钉上供氧器插扣板,然后挂上供氧器;
    3.用输氧管连接供氧器出氧接口,把供氧器的12V电源线与主机的12V电源线连接。如多个供氧器串联,只需增用三通接头即可,把管线用线扣固定;
    4.把主机的220V电源线插入墙上插座,供氧器红灯亮;
    5.请在湿化杯内加纯净水至指定位置。再把它装到供氧器出氧口上;
    6.请将输氧管套到湿化杯出氧口上;
    7.按下供氧器启动按钮,绿色指示灯亮,制氧机开始进入工作状态;
    8.按医生之医嘱,调节流量至所需位置;
    9.按吸氧面罩或鼻吸管包装说明图解挂好鼻插管或戴好面罩吸氧。
    技术研究
    中国对变压吸附制氧技术的开发起步较早,20世纪70年代是中国PSA分离空气制氧技术发展的鼎盛时期。全国有十几个单位相继开展了变压吸附制氧技术的实验研究,建立了数套工业试验设备。这个时期开发的变压吸附制氧设备的共同点有以下几个方面:
    ⑴大多采用高于大气压吸附、常压解吸流程,吸附塔有两个到四个;
    ⑵空气进入吸附塔前,经过脱水预处理;
    ⑶设备可靠性差,不能连续稳定运行,导致大部分设备报废;
    ⑷技术、经济指标落后。
    20世纪80年代,原来从事变压吸附制氧装备研制单位的开发项目相继中止,中国变压吸附制氧技术的开发再次进入低谷。
    1995年,昆山锦沪机械有限公司在河南洛阳钢铁厂建成VPSAO1000Nm3/h制氧机,标志着变压吸附在中国正式进入工业领域,也标志着变压吸附在中国进入高速发展时期。
    20世纪90年代是中国变压吸附制氧技术突飞猛进向前发展的时期,变压吸附制氧技术逐渐成熟,有些产品的综合技术经济指标已经接近国外先进水平。多年的实践表明,中国变压吸附制氧技术已经走出实验室步入实用化阶段。在近十年内,通过不断地技术更新和研究开发,中国变压吸附制氧技术日新月异、发展迅速,与世界先进水平之间的差距正在不断缩小。但从整体水平上看,中国在很多方面与国际先进水平仍有一定的差距。如在新型高性能的吸附剂的研究、吸附流程的改进、理论分析研究和数学模型的建立,质量监控与自动化控制等许多方面。
    吸氧方法
    制氧机吸氧浓度和制氧机流量换算方法
    计算公式:到达肺泡氧浓度%=21+4×制氧机流量(L/分钟)
    护理学中指出空气中含氧量为21%,我们吸低于25%的氧浓度则和空气中氧含量相似没有缓解价值,高于70%的浓度,持续时间超过1-2天,则发生氧中毒。所以有心肺疾病患者需要使用3升或以上流量制氧机。 [1]
    氧流量L/min 1 2 3 4 5 6 7 8 9
    氧浓度% 25 29 33 37 41 45 49 53 57
    白城二手空分制氧厂设备
    空分设备中下塔的压力、温度、纯度之间的关系





    进入下塔的空气经精馏后在顶部获得纯度较高的氮气。氮气进入主冷向液氧放出热,后冷凝成液氮。如果液氧温度一定,主冷的传热面积一定,气氮的冷凝量越多,则需要放出的热量也越多(主冷热负荷越大),这要求主冷的温差也越大,即气氮的温度要越高。


    塔内的气体是饱和蒸气,它的温度与压力、纯度之间存在有固定的关系:


    1、当压力一定时,气体的含氮量越高,则液化温度越低。例如,在0.55MPa、气体含氮为100%时,相应的液化温度为一177.8℃;含氮为96%时,液化温度为一176.90C。


    2、当下塔顶部温度不变时(相当于上塔压力、液氧纯度和液氧液面没有改变,气氮的冷凝量没有改变时),含氮量越高,相应的液化压力也越高。例如,当下塔顶部温度为-177.1℃,气体含氮为9999%时,相应的液化压力为0.58MPa;含氮为在大型空分设备中,同时制取纯氧、纯氮的设备比单独生产纯氧的设备,生产每立方米氧气的成本要高,其中主要原因就是在制取纯氮时,对下塔提供的液氮纯度要求提高,下塔压力相应提高,这样电耗就要大,氧气成本就提高。


    3、当气氮的纯度一定时,温度越高,液化所需的压力也越高。例如,当下塔顶部含氮为96%,温度为一178.1℃液化压力为0.5MPa;温度为一174.7℃,则液化压力为0.65MPa。当进塔空气量增加,主冷传热面显得不足或主冷传热效果由于传热面脏污而下降时,为保证一定的热量传递(一定的热负荷和液氧蒸发量),只能扩大传热温差。这就要求下塔顶部气氮的温度升高,下塔压力必然要升高。
    3. 汽液平衡浓度图(y-x图) 在一定压力下,取二元溶液中低沸点组分(氮)的浓度xN2为横坐标,与其平衡的气相中氮浓度yN2为纵坐标,构成的图叫y-x图(见图1-16)

    http://www.lsxtes.com